IN THIS work, the complexation reaction between La(III) ion and gatifloxacin drug belongs to flouroquinolone family was studied in an ethanolic solution. The coordination behavior of the formed complex was investigated by different techniques. The elemental analysis shows that the metal to ligand ratio of 1:1. The molar conductance measurement display the none electrolytic nature of the complex. The thermal behavior of the complex was investigated and the thermal decomposition pathways have been postulated showing that the final product is metal oxide and eight carbon atoms. Antibacterial and antifungal properties of the metal complex has also been examined against Gram positive bacteria (Bacillus Subtilis, and Staphylococcus aureus) and Gram negative bacteria (klebsiella pneumoniae, and Escherichia coli in addition to fungai (Candida albicans, Candida tropicalis, Aspergillus flavus, and Fusarium oxysporum). Gatifloxacin drug and its complex were found to have variable degree of a remarkable biological activity.

Keywords: Gatifloxacin; Metal complex; Spectrophotometry; Antimicrobial activity.
contributed to the formation of complexes with Gatifloxacin drug contains as example, Zn(II), Cu(II), Cd(II) and Cu(II) [22-24]. Despite the tremendous importance of the lanthanide metal ions, no studies were found regarding its complex formation with Gatifloxacin antibiotic ligand. The lanthanide compounds are widely used as antiemetic and effective treatment for various types of cancer [25-27]. According to previous points, in the present paper, we describe the syntheses La(III)- complex with gatifloxacin antibiotic drug. The prepared complexes have been characterized by different analytical techniques such as IR, UV, mass spectra, and thermal analysis. The Activity of metal complex against several types of bacteria, and fungi was investigated.

Experimental section

Chemicals used

All used materials were bought from Fluka, Prolabo and Sigma Aldrich Companies and are used without further purification.

Apparatus

UV-vis spectrophotometer, model UNICAM used for the absorbance measurements in the range 200–800 nm, Infrared spectra were recorded as KBr disc use a FTIR-IR prestige 21 covering the frequency range 400-4000 cm⁻¹. Perkin Elmer analyzer equipment’s-Shimadzu was used for thermal study from 50 to 1000 °C under a nitrogen air flow of 50 mL min⁻¹ and a heating rate of 10 °C min⁻¹. Melting point measurements were recorded using GALLENKAMP melting point apparatus.

Experimental part

Synthesis of lanthanum (III) complex

An equal ratios of ethanolic solution of LaCl₃.6H₂O was added slowly to an ethanolic solution of Gatifloxacin followed by gently stirring with a magnetic stirrer and allowed to reflex for 3 h on water bath where a precipitate was obtained. The precipitated complex was filtered, washed several times with ethanol followed by diethyl ether and dried in vacuum desiccators over anhydrous CaCl₂.

Microanalytical technique

Elemental analyses (Elemen. Analy. -Vario EL Fab. CHNS Nr.- 11042023) was used to determine the content of carbon, hydrogen, and nitrogen while La - content was determined complexometrically [28].

Molar conductance measurement

Molar conductance measurement of the prepared La (III) complex (1x10⁻³ M in DMF solvent) was measured at ambient temperature by JENWAY 3450 pH & Conductivity meter (JCM-3450).

Anti-microbial study

The evaluation of the fourth generation-gatifloxacin antibiotic and its lanthanum complex as anti-microbial compounds is done using agar well diffusion technique (AWDT) [29,30] by testing their effect and activity against selected types of bacteria of both types (Bacillus Subtilis and Staphylococcus aureus as a gram positive type and klebsiella pneumoniae and Escherichia coli as a gram negative type), as well as by studying the extent of their activity against some types of fungi (candida albicans, candida tropicalis, aspergillus flavus and fusarium oxysporum). The activity of the samples under study were estimated by measuring the diameter inhibition compared with the standard antibiotic gentamicin and amphotericin as a standard for bacteria and fungi, respectively. An inhibition zone diameter over 6 mm indicates that the tested compound is active against the organism under investigation.

Results and Discussion

Molar conductance measurement

A freshly prepared complex solution in DMF indicated that the complex is nonelectrolyte [31]. The conductance value with some physical properties of the complex were tabulated in Table 1.
TABLE 1. Analytical data and some physical properties of the synthesized metal complex

<table>
<thead>
<tr>
<th>Compound</th>
<th>Color (Yield %)</th>
<th>M.P. (°C)</th>
<th>C%</th>
<th>H%</th>
<th>N%</th>
<th>M%</th>
<th>A(μs cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(III) complex</td>
<td>Yellow (71)</td>
<td>227°C</td>
<td>37.34)(31.71</td>
<td>3.46)(4.03</td>
<td>6.87)(6.47</td>
<td>22.73)(22.4</td>
<td>0.77</td>
</tr>
</tbody>
</table>

IR spectra studies

For the prepared La (III) complex, several observations indicate the occurrence of the coordination bond between lanthanum ion and the carboxylate oxygen of the ligand. First, absence of the characteristic frequency of the carboxylic group of the antibiotic ligand which lie at 1715 cm⁻¹ and replace it by two very strong distinctive bands at 1568 and 1382 cm⁻¹ which can be assigned as asymmetric and symmetric ν (CO₂) stretching vibration of ν (O-C-O) s, respectively [32]. Further, shifting the frequency mode of ketone group of the ligand from 1633 to 1620 cm⁻¹ in the complex. In addition, a monodentate coordination mode of the carboxylate group can be demonstrated by presence the difference between the frequency of symmetric and asymmetric (O-C-O) (1382-1568 cm⁻¹). Also, the prepared lanthanum complex exhibit a characteristic broad band at 3410 cm⁻¹ due to ν (-OH) of coordinated water molecules. Finally, a new characteristic IR band was observed at 445 cm⁻¹ corresponded to ν (Li-O) vibration [33-35].

Electronic spectra

In the ultraviolet-visible region (200-800 nm), the electronic spectra of the solutions of antibiotic-HGAT ligand and its complex display presence of the electron transitions π → π⁺ and n → π⁺ for the rings of aromatic hydrocarbons and the groups of (ketone, -NH imine and carboxylic at 220, 290, and 340 nm, respectively [36].

Thermal analysis

Thermogravimetric analysis and differential thermogravimetric (TGA and DTG), respectively were performed under nitrogen atmosphere and the heating rate was suitably controlled at 10 °C/min. The results of TG/DTG of the prepared sample showed in Fig.2 and listed in Table 2. For the lanthanum complex, four degradation steps were appeared in the range 33-737 °C. The maximum temperatures occurred at 75, 281, 309 and 344 °C in the first, second, third and fourth step, respectively. The weight loss in the first step give 18.33 % (18.50% calc.), 9.32% (9.69% calc.), 14.15% (14.05 calc.%) and 19.42% (19.70 calc.%) for the first, second, third and fourth step, respectively. The lost species are (CO₂ and Cl₂), (HF and C₃H₅), (2H₂O (coordinated water) and 3NH₃ and (3C₂H₂ and CO₂) for the First, second, third and last step, respectively. After the deterioration, it was found that the weight loss of the residual is 38.78 % (38.06% Calc.) belonged to presence of lanthanum metal and 8C.

TABLE 2. Thermal decomposition data of La (III) complexes

<table>
<thead>
<tr>
<th>Compound</th>
<th>steps</th>
<th>temperature /°C</th>
<th>Degradation range /°C</th>
<th>Mass loss % Obs (calc.)</th>
<th>Total mass loss % Obs (calc.)</th>
<th>Assignment</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>La(III) complex</td>
<td>1</td>
<td>75</td>
<td>33-243</td>
<td>18.33 (18.50)</td>
<td>61.22 (61.94)</td>
<td>CO₂ and Cl₂</td>
<td>La +8C</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>281</td>
<td>243-289</td>
<td>9.32 (9.69)</td>
<td></td>
<td>HF and C₃H₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>309</td>
<td>289-344</td>
<td>14.15 (14.05)</td>
<td></td>
<td>2H₂O and 3NH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>344</td>
<td>344-737</td>
<td>19.42 (19.70)</td>
<td></td>
<td>3C₂H₂ and CO₂</td>
<td></td>
</tr>
</tbody>
</table>

Anti-microbial activity

The biological performance of the gatifloxacin antibiotic drug and its complex with lanthanum ion was evaluated by studying their activity as an anti-microbial against selected types of bacteria and fungi. Anti-bacterial activity was studied against *Bacillus Subtilis* (Gram +ve), *Staph.aureus* (Gram +ve), *klebsiella pneumoniae* (Gram -ve) and *E. Coli* (Gram -ve). While *Candida albicans*, *Candida tropicalis*, *Aspergillus flavus*, *Fusarium oxysporum* were used as types of fungi to examine the prepared compounds as anti-fungal. From the results and obtained values we can observe the higher activity of the prepared complex against all types of bacteria, where the values of inhibition zone are (49 mm, 37 mm, 50mm and 29 mm) for the (*Bacillus Subtilis* (Gram +ve), *Staph.aureus* (Gram +ve), *klebsiella pneumoniae* (Gram -ve), and *E. Coli* (Gram -ve)), respectively. On the other hand, the HGAT ligand showed the highest antifungal performance against *Candida albicans* (17 mm) and *Candida tropicalis* (14mm), while the La(III) complex did not show any noticeable activity against all fungal species. The results of anti-microbial activity are presented in Table 3 and displayed in Fig. 3 and 4.

Table 3. Antimicrobial screening results of La(III) complex

<table>
<thead>
<tr>
<th>Compound</th>
<th>Gram – Positive bacteria</th>
<th>Gram – negative bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacillus Subtilis</td>
<td>Staph. aureus</td>
<td>K. pneumoniae</td>
</tr>
<tr>
<td>La(III)- complex</td>
<td>49</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>26</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Amphotericin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NA : No activity
Gatifloxacin investigation based on colorimetric assay

Due to the successful interaction between gatifloxacin and La(III) ion giving La(III) complex, the use of complex formation idea is very useful in estimation of gatifloxacin in its formulations. The earlier studies show that the colorimetric method is based on formation of a colored complexes and hence, this technique can be applied in gatifloxacin investigation. The test of the interaction between gatifloxacin and Fe(III) ion resulted in formation of Fe (III) complex characterize with an orange color. Uv-vis spectroscopy study confirm Fe (III) complex formation. In future, a more work is needed to further study including some factors affecting on complex formation.

Conclusion

Flouroquinolone family has been highly considered due to its high activity against Gram positie and Gram negative bacteria. Mainly, there are four different classes of Flouroquinolone family. Among the members of the fourth

Fig. 3. Antibacterial activity of HGAT antibiotic ligand and La(III) complex

Fig. 4. Antifungal activity of HGAT antibiotic ligand and La(III) complex
generation group, Gatifloxacin antibiotic. Gatifloxacin has the ability to form the metal complexes because it has different coordination sites. The utilization of Gatifloxacin as an organic ligand in interaction with La(III) ion is an example of Gatifloxacin metal complexes which allows the progress of metallodrugs. The coordination behavior of the formed complex was investigated by different techniques. Antibacterial and antifungal properties of the metal complex has also been examined against different species of Gram positive and Gram negative bacteria in addition to fungi

Acknowledgment
The authors wish to acknowledge the valuable supports provided by Faculty of Science (Girl’s), Al-Azhar University, Egypt.

Funding statements
Not applicable.

Conflicts of interest
The author declares no conflict of interest.

References

COMPLEX FORMATION OF GATIFLOXACIN DRUG BELONGS ...