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Abstract 

aterial science is becoming more popular and useful, with a significant demand for compo-

site materials that incorporate the finest attributes of both components. Polymer nanocom-

posites have recently created quite a stir in the media and in a variety of industries. There 

has been a lot of interest in modifying the structure and composition of materials on a nanometre scale 

all across the world in recent years. As a result, a thorough examination of the production, properties, 

and applications of polymer nanocomposites is essential. Polymer nanocomposites are classified into 

numerous types depending on a variety of characteristics. The sol gel method, in-situ polymerisation, 

solution mixing, melt mixing, and in-situ intercalative polymerisation are all utilized in the prepara-

tion. Nanocomposites' mechanical, optical, rheological, flame retardancy, and dielectric properties 

have all been extensively researched. Finally, the important applications of nanocomposites have been 

explored, as well as their future potential. 
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Introduction 

Nanotechnology is the method of modifying the 

shape and size of structures, electronics, and sys-

tems at the nanometer scale 1 nm to 100 nm (10
-9

m) 

or the science of tiny objects with sizes smaller than 

100 nm see Figure 1 and Figure 2[1, 2]. 

 

Figure 1: Surface-to-volume ratio of nanoparticles 

compared with that of bulk materials 

 

Researchers have shown that materials at very 

small sizes, such thin films and nanoparticles, may 

differ greatly from materials at very large sizes[3, 

4]. These unique qualities have fueled the develop-

ment of nanoscience and the use of NPs in a variety 

of industries, including paints, cosmetics, biomedi-

cine, electronics, food analysis, environmental 

cleanup, and cosmetics[5, 6]. 

 

Figure 2: Nanomaterials peculiarities of size scale 

 

Nanoscience is one of the more important re-

search disciplines in modern science. Nanotechnol-

ogy is enabling researchers to work at the molecular 

and cellular levels, resulting in significant advances 

in life sciences and healthcare[7-11]. 

Nanofibrous textiles are textiles made up of na-

noscale fibers. The first commercial application of 

nano finishing materials in textiles is in the form of 

nanoparticles. However, due to the poor attachment 

of these nanoparticles on the textile surface, these 

finishes do not withstand repeated washing, hence 

nanocomposites can offer improved multiple func-

tions by overcoming the constraints associated with 

conventional materials[12]. 

M 

Journal of Textiles, Coloration and Polymer Science 
https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

https://jtcps.journals.ekb.eg/ 

 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J. Text. Color. Polym. Sci., Vol. 21, Special Issue, pp. 153-176 (2024) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Egyptian Society for Textile Science 

and Technology

                                       



SARA. A. EBRAHIM et al. 

 

J. Text. Color. Polym. Sci. Vol. 21, Special Issue, (2024) 

154 

Methods of synthesis of nanomaterials 

The qualities of materials influence their per-

formance. The properties of tern are determined by 

the atomic structure, composition, microstructure, 

defects, and interfaces, which are governed by the 

synthesis's thermodynamics and kinetics. 

Classification of Techniques for synthesis of Na-

nomaterials 

The synthesis of nanomaterials can be done in 

two general ways see Error! Reference source not 

found.: 

a) Top- down approach  

b) Bottom–up approach. 

Top- down approach 

In a top-down method, the bulk material is bro-

ken down into particles or structures that are na-

noscale.  

Techniques to generate micron-sized particles 

have been expanded upon by top-down synthesis. 

Top-down techniques are simpler by nature and rely 

on either miniaturizing bulk production procedures 

or dividing or removing bulk material in order to 

produce the desired structure with the right attrib-

utes[13].  

Bottom–up approach 

Bottom-up approaches refer to the construction 

of a material from the ground up, atom by atom, 

molecule by molecule, or cluster by cluster see Er-

ror! Reference source not found..This technique 

is used in printing and finishing textiles. 

 

Figure 2: Schematic representation of ‘top-down’ 

and 'bottom-up’ approaches for synthesis of na-

noscale materials[14] 

Polymer Nanocomposites 

Polymer nanocomposites (PNCs) are polymer-

nanomaterial blends with at least one-dimensional 

structure and one component material with a na-

nometer size smaller than 100 nm. Combining na-

nomaterials into the polymer matrix not only pro-

duces a new class of properties provided by uni-

formly dispersed nanomaterials, but it additionally 

significantly enhances most of the original 

polymer's expected properties, such as mechanical 

properties, heat resistance, biodegradability, and 

more[15].  

Types of polymers 

Polymer nanocomposites are classified into two 

types based on the sort of polymer used: 

 biodegradable polymer.  

 non-biodegradable polymer 

biodegradable polymer nanocomposites 

Nowadays, especially as a result of the global 

pollution problem, there's a tendency toward the 

search for and use of biodegradable polymers, pol-

ymeric compounds, and polymeric nanocomposites. 

The main characteristic and benefit of biodegrada-

ble polymers is that, once they stop degrading, their 

polymer chains tend to break down into simpler 

molecules and structures than the original structure 

due to bacteria, radiation, oxygen, and other fac-

tors[16]. 

As the polymer chains deteriorate, the articles 

made from these materials are broken and disinte-

grated into small fragments that cause minor dam-

age to the environment. In some cases, depending 

on the polymer, the degradation products can arrive 

to be beneficial to the environment where disinte-

gration occurs. Biopolymers are an example of this 

because, as part of a compost structure, the chemi-

cals from the decomposition may benefit the envi-

ronment. 

In general, polymers can be classified into the 

following 3 categories[17]: 

Biodegradable natural polymers 

Because they are created by living creatures and 

are entirely biodegradable and renewable, these 

natural polymers are also known as ecologically 

degradable polymers. Polymers are classed as fol-

lows: polysaccharides (for example, starch), chi-

tosan[17-21]. 

Biodegradable synthetic polymers 

They are biodegradable polymers that can be 

decomposed by enzymes. This class of material 

includes aliphatic polyesters, which can be hydro-

lyzed by lipases and esterase, and poly (caprolac-

tone) (PCL), which can be destroyed by the activity 

of Penicillium spp. PCL is a popular polymer for 

making biodegradable synthetic polymer nanocom-

posites[18]. 

Biodegradable polymer blends 

This category includes materials that are the re-

sult of mixing biodegradable and non-biodegradable 

polymers. These materials are biodegradable, and 

they are less expensive than pure biodegradable 

natural polymers. Examples include those manufac-
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tured by combining low density polyethylene with 

starch or poly (3-hydroxybutyrate), where the pres-

ence of the biodegradable polymer allows for par-

tial biodegradation, making the combination a via-

ble option to totally biodegradable polymers[18]. 

Non-biodegradable polymer 

They are polymers that, as their title implies, are 

not broken down into simpler molecules by biologi-

cal processes and, as a result of their proclivity to 

remain intact over time, are causing harm to our 

environment. Polyethylene terephthalate, polypro-

pylene, and polystyrene are examples of non-

biodegradable polymers. 

The Properties of Polymer Nanocomposites 

Many features of the original polymer, as well 

as new qualities coming from the addition of nano-

particles, can be considerably improved in PNCs 

see Figure 3. 

 

Figure 3: Significant properties of polymer nano-

composites 

Synthesis of Polymer Nanocomposites 

To achieve the functionalities of fillers, it is re-

quired to equally distribute the fillers into the ma-

trix during PNC synthesis. However, because the 

fillers are nanoscale, the uniform dispersion is sig-

nificantly different from that of microscale fillers, 

as shown in the following features. First, if the fill-

ing process is performed according to volume frac-

tion, substantially more nanometer fillers are re-

quired than microfillers at the same volume frac-

tion. As a result, the nanoparticles in the matrix are 

more crowded, with higher van der Waals and elec-

trostatic interactions between the particles, making 

uniform distribution impossible. Second, aniso-

tropic nanofillers have a very high aspect ratio, 

making them highly effective. 

i) Ultrasonication-assisted Solution Mixing 

Ultrasonication-assisted solution mixing is the 

most often utilized method for producing PNCs. 

The nanofillers and polymer are first dissolved in a 

solution in this process. The nanofillers are then 

evenly disseminated throughout the matrix with the 

use of ultrasound. The PNCs are then produced by 

evaporating the solvent[22, 23]. 

The ultrasonic energy, which is greater than the 

energy of interaction among the nanomaterials in 

the aggregates, separates the nanoparticles from the 

agglomeration state and separates them into smaller 

pieces. The aggregates of nanofillers are broken 

down into smaller ones as the ultrasonic time in-

creases, and eventually become individual nanopar-

ticles independent of other nanoparticles in the pol-

ymer. Furthermore, this technique is frequently car-

ried out at high temperatures, which might com-

mence in situ polymerization of reactive monomers 

or their soluble prepolymers with nanomaterials in 

order to improve interfacial interactions[23, 24]. 

ii) Shear Mixing 

Shear mixing, as opposed to ultrasonic-assisted 

mixing, is a far more common and easy technology 

that only requires the stirring process and has the 

potential for industrial mass production. The shear 

force created by the stirrer turning is employed to 

separate the aggregates of nanofillers during the 

stirring operation.Because of the low shear force, 

the nanoparticles will be separated under stirring 

and then aggregated again, therefore the agitator 

speed must be increased to complete the separation. 

Because this approach does not generally disrupt 

the structure of nanofillers, it is appropriate not only 

for separating weakly bound nanoaggregates, but 

also for peeling off some stacked nanosheets. 

iii) Three Roll Milling 

Three roller milling is a method of distributing 

nanofillers in high viscosity matrix, such as ink, 

paste substance, coating, and so on, using shearing 

force between wheels. Three roll milling machines 

are made up of three cylindrical rollers that revolve 

at various speeds, while the neighboring rollers ro-

tate in the opposite direction. Because the speeds of 

the rollers and the distance between them are 

changeable, the particle size distribution and homo-

geneity of the packing may be properly regulated. 

Furthermore, because the shearing force generated 

between the rollers is greater than that generated by 

stirring, the procedure can be used to high viscosity 

materials and performed with little or no solvent. 

As a result, this approach is frequently employed to 

disseminate anisotropic nanofillers such as 

CNTs[25, 26]. 

iv) Ball Milling 

Ball milling is a common operation in the metal-

lurgy and mineral processing industries. The objec-

tive of ball milling is to grind and combine powders 

in a tight space by utilizing the massive shear and 

compression forces generated by severe ball contact 

see Figure 4. This approach can disperse CNTs, 
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graphene nanoparticles, silica nanoparticles, and 

BNs into thermoplastic and thermosetting polymers 

during the manufacture of PNCs. Ball milling's 

strong shear force can peel off various two-

dimensional nanostructures, such as graphene, 

MoS2, and BNs, but it might not separate the inter-

layer structure coupled by ionic bonding [27-29]. 

Furthermore, because ball milling is suited for both 

solvent-free and solvent-containing conditions, 

nanofillers can be directly distributed in various 

solid thermoplastic matrices, such as polyethylene 

(PE), polyphenylene sulfide, and polymethyl meth-

acrylate (PMMA)[30-32].  

 

Figure 4: The principle of the ball milling 

method[14] 

v) In Situ Synthesis 

In addition to the aforementioned techniques of 

distributing prepared nanofillers into polymers, in 

situ synthesis, that synthesizes nanoparticles in pol-

ymers via molecular precursors, is an important 

synthesis strategy[33]. There are three common 

methods for obtaining nanocomposite in situ meth-

od: 1) in situ growth of nanoparticles in polymer 

matrix; 2) in situ polymerization of polymer in the 

presence of preformed nanoparticles;3) double in 

situ method[34]. 

 

In situ growth of nanoparticles in polymer ma-

trix 

Nanoparticles are generated from precursors in 

this technique, whereas the polymer matrix is pre-

formed. Chemical reductions, photo-reductions, and 

acid/alkali-induced hydrolysis are all methods for 

preparing nanoparticles in situ see Figure 5 [35]. 

 

In situ polymerization of polymer in the presence 

of nanoparticles 

Monomer polymerization around pre-formed 

nanoparticles can be used to create hybrid materials. 

In this process, inorganic nanoparticles are initially 

dispersed in monomers before being polymerized. 

Because of the low viscosity of the monomers, this 

approach may yield a homogeneous dispersion of 

nanoparticles[35]. 

Double in situ method 

A two-step in situ approach has been developed, 

in which polymer and nanoparticles (NPs) are gen-

erated simultaneously. Nanoparticle precursors are 

dispersed into polymerizable monomers, and the 

polymer matrix is created concurrently with the NP 

production. As a consequence, the in-situ metal 

surfaces formed can accelerate or initiate polymeri-

zation by transferring electrons from metal surface 

atoms to monomers. It was shown to be the most 

efficient way for producing stable polymer-based 

organic-inorganic nanocomposites[34, 35]. 

 

Figure 5: in situ method a) In situ growth of nano-

particles in polymer matrix, b) In situ polymeriza-

tion of polymer in the presence of nanoparticles, c) 

Double in situ method[35] 

 

vi) Melt blending 

Polymeric nanocomposites are formed through 

melt processing by mixing a nanomaterial with a 

polymeric matrix material using conventional melt 

equipment like an extruder see Table 1 

 

 

Figure 6: Preparation of nanocomposites using Melt 

blending 

 

Polysaccharides 

Polysaccharides are important substances in the 

creation of textile materials because they can be 

employed as fiber, coating, or stabilizing compo-

nents. They are renewable resources that have re-

ceived a great deal of attention due to their biocom-
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patibility, biodegradability, and wide range of bio-

logical activity (e.g., anti-inflammatory, immuno-

regulation, anticancer, anticoagulant, antioxidant, 

antibacterial, and hypoglycemic action). As a result, 

they have seen widespread use in materials engi-

neering, specifically in packaging systems, tissue 

engineering, controlled medication delivery, flexi-

ble electronics, and 3D printing. They are natural 

macromolecules made up of monosaccharide units 

joined together covalently by glycosidic bonds to 

create polymer chains[36-40]. Today, thousands of 

polysaccharides can be extracted from natural 

sources, including plants (e.g., cellulose, starch, and 

pectin), algae (e.g., alginate, agar, fucoidan, and 

carrageenan), animals (e.g., hyaluronic acid, hepa-

rin, chitin, and chitosan), and microorganisms (e.g., 

xanthan gum, dextran, pullulan, and bacterial cellu-

lose)see Figure 7[41-44]. 

 

 
Figure 7: Chemical structures of polysaccharides 

commonly used in textile applications 

Hybrid textiles, which contain both organic and 

inorganic ingredients, are a new and promising sec-

tion of the textile business. Hybrid textiles may 

have a synergistic impact between their ingredients, 

enhancing their range of qualities and activity and 

so improving the end goods. There are numerous 

combinations that could result in several unique 

textiles with unpaired features. When paired with 

various MNPs, polysaccharides present a number of 

opportunities. In the recent decade, there has been a 

surge in interest in the use of polysaccharide deriva-

tives and their nanosystems to create hybrid materi-

als. Novel and better functionalizations enable the 

research and development of hitherto unattainable 

areas of application see Figure 8[45, 46]. 

 

Figure 8: Representation of polysaccharides acting 

as reducers and stabilizers of metal nanoparticles. 

 

 

Table 1: Summary of common methods for synthesis of polymer nanocomposites 

Technique 
Suitable fill-

er 
Suitable matrix Solvent 

Controlling fac-

tors 

Ultrasonication 

assisted solution mix-

ing 

All types 

Liquid or viscous 

monomers or oligomers 

of thermosets 

Required 
Sonication power 

and time 

Shear mixing Nanosheets 

Liquid or viscous 

monomers or oligomers 

of thermosets 

Required 

Shapes of the ro-

tor blades, rotating 

speed and time 

Three roll milling 
Nanosheets 

and nanotubes 

Liquid or viscous 

monomers or oligomers 

of thermosets 

Not re-

quired 

Speed of roller, 

gap between adjacent 

roller 

Ball milling All types 

Liquid or solid 

thermoplastics and 

thermosets 

Not re-

quired 

Time of milling, 

ball size, rotating 

speed, ball/nanofiller 

ratio 

Double-screw ex-

trusion 
All types Solid thermoplastics 

Not re-

quired 

Processing tem-

perature, screw con-

figuration, rotation 

speed 

In situ synthesis All types 

Liquid or viscous 

monomers or oligomers 

of thermosets 

Required 

Chemical reaction 

conditions, tempera-

ture, condensation 

rate 
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Polymer Nanocomposites 

Chitosan 

Chitin is a natural polymer found in the exoskel-

etons of arthropods, arachnids, and crustaceans, as 

well as the endoskeletons of cephalopods such as 

squid and octopus. It is the second most common 

polysaccharide following cellulose in nature [47, 

48]. It is also a required component of the cell walls 

of several mushrooms, and certain fungus species 

have been used in the industrial production of chi-

tin. Chitosan is a valuable biopolymer composed 

primarily of N-deacetylated chitin produced via 

chemical or enzymatic deacetylation of chitin as 

showen in Figure 9 .  

Chitin and chitosan are both heteropolysaccha-

rides made up of randomly distributed 2-acetamido-

2-deoxy-b-D-glucose (N-acetyl-D-glucosamine) 

and 2-deoxy-b-D-glucopyr-anose (D-glucosamine) 

polymers linked together by b-(1/4) glycosidic link-

ages[49-51]. Because of the presence of amine 

groups (deacetylated functionalities), chitosan is 

soluble under certain conditions. Chitosan is only 

soluble in acidic solvents with a pH lower than its 

pKa (6.2-6.5). It has tremendous potential in a 

range of scientific domains, including biomedical, 

food, agriculture, cosmetics, textiles, pharmaceuti-

cals, and other industries, thanks to its nontoxic, 

biodegradable, biocompatible, and microbe-

resistant qualities[52, 53]. 

 

Figure 9: Chitosan chain from resources to final 

applications 

Chitosan as an auxiliary agent in dyeing and print-

ing processes 

CS has been frequently employed as a bio-agent 

in textile dyeing and printing processes using syn-

thetic and natural dyes.Its use has several ad-

vantages over traditional dyeing procedures in salt-

free dyeing, including the elimination of hazardous 

and dangerous salts, maximal fixing and minimum 

hydrolysis of dyes, and a low volume of water re-

quired during the wash off process, resulting in sig-

nificant cost savings[54-63]. 

Because CS includes a high percentage of amino 

groups, it provides more dye sites for anionic (reac-

tive, acid, and direct) dyes to be absorbed by textile 

fibers and textiles via van der Waals forces and 

electrostatic attraction. As a result, CS treatment 

can increase the tinctorial qualities of textiles in 

salt-free dyeing baths, such as anionic dye affinity, 

color strength, and fastness[64-66]. 

Mohamed, F.A., M.M. Reda, and H. Ibrahim, 

using chitosan nanoparticles for treating cotton and 

viscose fabrics for enhancement of dyeing and an-

timicrobial properties. The dyeability of treated 

fabrics rose and was not affected by dye concentra-

tion, and treated cotton and viscose fabrics with 

various concentrations of chitosan impart a high 

antibacterial action with high growth suppression 

and treated fabrics have a higher K/S [67]. 

Costa, E.M., et al., worked on dyeing cotton 

treated with chitosan nanopartical dyed wih Navy 

blue everzol (a reactive dye) for enchancing color 

uptake and antibacterial. treated dyed cotton with 

navy blue everzol NTDs were shown significant 

antibacterial activity against MRSA, MSSA, and A. 

baumannii. These findings demonstrate the success-

ful development of an easy, environmentally friend-

ly process that allows cotton to be dyed and func-

tionalized in one step and used in future biomedical 

textiles[68]. 

Christine Wong and Jude Clapper using Chi-

tosan and TPP crosslink creates a nanoparticle to 

encapsulate dye particles using dilutions of the 

0.5M solution yielded indigo dye solutions with 

concentrations of 0.1M, 0.2M, 0.3M, and 0.4M. 

The findings show that a potentially better dye 

alternative can be created by being encapsulated in 

chitosan-TPP crosslinked nanoparticles[69]. 

Abdelslam, S., et al., using chitosan and chi-

tosan nanoparticles for printing natural fabrics with 

natural dyes. By treating natural fabrics in three 

ways: pretreatment, concurrent treatment, and post-

treatment with chitosan and Chitosa nanoparticlesas 

with different concentration then printed with ex-

tracted natural dye (turmeric, madder, or berberine) 

silk screen printing technique.   

Natural fiber qualities improved like K/S values 

of treated fibers were greater and had better fastness 

qualities than untreated fibers.When compared to 

bulk chitosan, nanochitosan shown superior quali-

ties due to its larger surface area and smaller size, 

and all treated materials have good fastness values 

for washing, perspiration, indicating greater UV 

protection and rubbing. [70].  

Hebeish, A., et al., using natural dye loaded 

chitosan nanoparticles for textile printing using flat-

screen printing technique. Increased dye to chitosan 

nanoparticle ratio leads in greater K/S values of the 

printed cloth independent of fixation procedure[71]. 
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Multi-functional textile finishing with chitosan 

Surface modification of fabrics with CS is used 

to create highly active textile surfaces with a variety 

of functionalities, including antimicrobial and anti-

viral activities, deodorizing, flame retardancy, anti-

static, shrink-resistance, water repellency, and UV 

protection. There are actually two main ways to use 

CS in surface modification formulations: as an ac-

tive agent imparting the desired characteristic to the 

fabric and, on the other hand, as a compound sup-

porting the efficiency of active agent release (mi-

croencapsulation) or acting as a carrier or binder 

material. 

Antimicrobial finishing 

CS is a broad-spectrum biocide (it kills germs) 

and biostatic (it prevents microbe growth) with 

strong antimicrobial activity against gram-positive 

and gram-negative bacteria, as well as fungi and 

yeasts. The key factors that greatly influence the 

antibacterial efficiency of CS are its positive 

charge, degree of N-deacetylation, mean polymeri-

zation degree, and the nature of chemical changes. 

Similarly, CS used as an antibacterial agent in tex-

tiles has gained popularity due to its antibacterial 

activity combined with good moisture retention[62, 

72-77]. 

As an antibacterial agent, CS can operate in two 

ways: passively by causing a reduction in protein 

adsorption on bacterium surfaces, so limiting path-

ogen adhesion capacity (in this scenario, bacteria 

are not killed, but merely rejected), or actively by 

killing bacteria on contact.99 CS postulated the 

following pathways for antibacterial activity[78]: 

 the polycationic structure of CS, which can 

be expected to interact with primarily anion-

ic components (lipopolysaccharides (LPSs) 

and proteins on the microbe surface), leading 

in alterations in permeability, which cause 

cell death by causing intracellular component 

leakage; 

 The CS on the cell's surface can form a pol-

ymer membrane, preventing nutrients from 

entering the cell. 

 Lower MW CS enters the cell, binds to 

DNA, and inhibits RNA and protein produc-

tion. 

 Because CS can adsorb and flocculate elec-

tronegative chemicals in the cell, it disrupts 

the physiological functions of the microbe, 

resulting in cell death. 

Sevil ERDOĞAN [79] using chitosan from 

(shrimp or crayfish) and nano-Ag mixture for fin-

ishing white cotton calico fabric against Escherichia 

coli. By preparing chitosan and nano-Ag solutions 

and treating fabric by pad-dry method with 100% 

squeezing pressure then the fabrics were dried at 

105–110 °C and finally fixed at 120℃. 

Chitosan created a colorless layer and a matrix 

that allowed the uniform deposition of nano-Ag 

particles on the fabric's surface.Additionally, the 

technique for coating fabrics is helpful and suitable 

to long lengths. Because of its affordability and 

ease of use, it can be used in the sector.By lowering 

the use of antibiotics, chitosan nano-Ag coating as a 

finishing helps to safeguard human health. The as-

sessment of crayfish and shrimp wastes as chitosan 

is another way that environmental conservation is 

aided.  

Silva, I.O., et al., using Chitosan/Gold Nano-

particles Coatings for Biomedical Textiles. They 

treated soybean knitted fabric with Chitosan/Gold 

Nanoparticles at 70℃ for 30min then dried at 70 ◦C 

for 1 h. 

The incorporation of AuNPs into a chitosan ma-

trix shown outstanding antibacterial activities 

against both Gram-positive and Gram-negative bac-

teria, UV-light protection (UPF + 50), and washing 

fastness up to five laundry cycles. Aside from their 

high potential for biomedical applications, the coat-

ed AuNPs/chitosan soybean-based fibres demon-

strated better thermal stability and intriguing prop-

erties for textile structural coloration[80]. 

Korica, M., et al. using chitosan Nanoparticles 

for enhancing antibacterial of viscose fabric by im-

mpesing viscose samples into the NCS or NCS + Zn 

dispersion for 30 min, at room temperature then 

squeezing. 

The antibacterial activity of viscose fabrics 

functionalized with chitosan nanoparticles (without 

and with embedded zinc ions) were improved by 

successful irreversible binding of antibacterial 

agents using two different viscose fabric pretreat-

ments: TEMPO oxidation and TOCN coating, 

which provided carboxyl and aldehyde groups on-

to/into the viscose fabric[81]. 

Mohamed, F., M. Reda, and H. Ibrahim, us-

ing chitosan nanoparticals for cotton fabric  for en-

hancing easy care and antibacterial by using -dry -

cure technique. 

Even after 10 washes, the resulting materials 

exhibit anti-crease and easy-care qualities, as well 

as antibacterial capabilities. After the multifinishing 

procedure, the materials retain a significant amount 

of their strength and comfort. Finally, our newly 

prepared freeze drying chitosan nanoparticles ad-

vance textile finishing processes by introducing 

ease and care characteristics, antibacterial proper-

ties, and fabric comfort that are primarily recom-

mended for use in heavy-duty industrial fabrics and 

medical applications[67]. 

Antiviral functionalization 

Previous studies have indicated that marine pol-

ysaccharides like CS have antiviral action.CS ex-

hibits antiviral action against human viruses such as 
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H1N1 influenza A, CMV strain AD, and SARS-

CoV-2, according to several investigations[82-84]. 

Mori Y, Ono T, Miyahira Y, et al. using silver 

nanoparticle/chitosan composites against H1N1 

influenza A virus. The composites' antiviral activity 

was assessed by the lowered TCID50 ratio of viral 

suspensions after treatment with the composites. 

The antiviral activity of the AgNP/Ch composites 

increased with the number of Ag NPs tested for all 

sizes of Ag NPs examined. For equivalent quanti-

ties of Ag NPs, composites comprising smaller Ag 

NPs demonstrated stronger antiviral efficacy[85]. 

Application in Medical Textiles 

Textiles are presently used in a wide range of 

industries and applications. The medical industry is 

one of them. Medical, hygiene, and health are im-

portant and expanding segments of the textile in-

dustry. Medical textiles are one of the most im-

portant, constantly growing, and ever-expanding 

topics in technical textiles. Medical textiles are con-

structs that have been designed and built for medi-

cal purposes. The uses range from a single thread 

stitch to complicated composite structures for bone 

replacement, and from a simple cleaning wipe to 

specialized barrier textiles used in operating rooms. 

Textile materials and products designed to meet 

certain characteristics are suited for any medical 

and surgical application requiring a combination of 

strength, flexibility, and, in some situations, mois-

ture and air permeability[21, 75, 86, 87]. 

 

 

Table 2: Application of polymer nano composites in protective textiles 

Polymer Nanoparticles 

Synthesis of pol-

ymer nanocompo-

sites 

substrate 
Application 

Technique 
Properties Ref 

Chitosan 
Graphene 

nanosheet 
Blending Cotton pad-dry-cure UV-protection [18] 

Chitosan 

titanium diox-

ide and/or zir-

conium oxide 

Blending Cotton 

Coating 

technique 

 

UV-protection-

Antibacterial 

activity 

[88] 

Chitosan/clay Silver 

In situ growth of 

nanoparticles in 

polymer matrix 

 

Cotton pad-dry-cure 

Flame retardant-

Antibacterial 

activity- UV-

protection 

[89] 

Chitosan graft-

ed-Polyvinyl 

acetate 

TiO2 and ZnO 

/TiO2 nanopar-

ticles 

Blending Cotton pad-dry-cure 

Water repellent-

UV Protection-

Antibacterial 

Activity-Self - 

cleaning 

[90] 

Chitosan  CuO 
Double in situ 

method 

cotton and cot-

ton/polyester 
pad-dry-cure 

Antibacterial 

activity 
[91] 

Chitosan ZnO 
Double in situ 

method 
Cotton pad-dry-cure 

Antimicrobial 

and UV Protec-

tion 

[92] 

 

Table 3: Textile materials functionalized with chitosan and metal nanoparticles. Polysaccharide function to-

wards MNPs. 
Polysaccharide 

Function 

NPs (Shape, 

Size) 

Textile Sub-

strate, Structure 

Application 

Method 
Properties Ref 

Antimicrobial 

activity 

Ag (n.d. *) Cotton, woven Packaging 

Antimicrobial activity against S. 

aureus, P. aeruginosa, C. albicans, 

and A. niger; chitosan increased 

air permeability and water absorb-

ance 

[93] 

Ag (n.d.) Cotton, woven 

Medical and 

UV-protective 

textiles 

Air and water permeability de-

creased, whereas tensile strength 

and elongation increased; superior 

UV blocking; antimicrobial activi-

ty against P. aeruginosa, S. aure-

us, A. niger, and C. albicans 

[94] 

Ag (spherical, 

<100 nm) 
Cotton, woven 

Hygienic 

products 

Antibacterial activity against S. 

aureus improved with the addition 

of AgNPs 

[95] 

Chitosan-

TiO2 and chi-

tosan-TiO2/ZnO 

Cotton, woven 

Antimicrobial, 

self-cleaning, 

and UV-

Enhanced antibacterial activity 

against S. aureus, E. coli, and A. 

niger; improved self-cleaning and 

[90] 
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(spherical, 11.7 

nm) 

protective 

textiles 

UV-protective properties 

Ag (n.d.) PET, nonwoven 

Antimicrobial 

textiles 

(wound dress-

ings) 

Improved antibacterial activity 

against E. coli and S. aureus 
[96] 

Psidium guaja-

va extract-ZnO 

(spherical, 

12–18 nm and 

5–7 nm (water 

and ethanol 

extract) 

Cotton, woven 
Antimicrobial 

textiles 

Composite with ZnONPs had bet-

ter antimicrobial activity and UV 

protection in the presence of chi-

tosan 

[97] 

PVP-Ag (n.d., 

30 nm) 

Acrylic acid and 

chitosan-grafted 

polypropylene, 

nonwoven 

Antimicrobial 

textiles 

Antibacterial resistance increased 

after coating with chitosan and 

improved further with the addition 

of AgNPs (E. coli, S. aure-

us, and B. subtilis) 

[98] 

Antimicrobial 

activity; immobi-

lization 

Ag (n.d., 

40–70 nm) 
PET (n.d.) 

Antimicrobial 

and flame-

retardant tex-

tiles 

Good antibacterial resistance 

against E. coli; flame retardance 

was improved with the addition of 

AgNPs along with chitosan 

[99] 

Chitosan-Ag 

(spherical, 20 

nm) 

Cotton, woven 

Antibacterial, 

UV-protective, 

and flame-

retardant tex-

tiles 

Antimicrobial activity against E. 

coli, S. aureus, and C. albicans; 

small reduction after 20 washing 

cycles; improvement in UV-

protective and flame-retardant 

properties 

[89] 

CMCh-Ag 

(spherical, 10–

20 nm) 

Viscose, woven 

Antimicrobial 

textiles 

(wound dress-

ings) 

Superior antibacterial activity 

against S. aureus compared to that 

against E. coli with increasing 

concentration of AgNPs 

[100] 

Ag (n.d., 34.4 

nm) 
Cotton, woven 

Antibacterial 

textiles 

No cytotoxic effect on human 

skin; excellent antibacterial dura-

bility against E. coli and S. aure-

us achieved by a small Ag dosage 

[101] 

 

nO and 

TiO2 (rod-

shaped, 

18 nm) 

Cotton, woven 

Antimicrobial 

and UV-

protective 

textiles 

The durability of antibacterial 

efficiency against K. pneumo-

nia and S. aureus increased up to 

10 washing cycles the using sol–

gel method 

[102] 

Antimicrobial 

activity; stabiliz-

ing agent 

Chitosan-Cu 

(n.d., 20–30 

nm) 

Cotton and cot-

ton/polyester, 

woven 

Antimicrobial 

textiles 

Antibacterial effect was predomi-

nantly observed against S. aure-

us in comparison with E. coli 

[103] 

Antimicrobial 

activity; substrate 

Carboxymethyl 

pullulan-ZnO 

(spherical, 9 

nm) 

Cotton, woven 

pH, thermo-

sensitive, and 

antibacterial 

agents 

Antimicrobial activity towards S. 

aureus and E. coli; textile sensi-

tive to temperature between 24 

and 40 °C and pH 3, 7, and 10 

[104] 

Ag (n.d.) Cotton, woven 
Antimicrobial 

textiles 

Improved antimicrobial properties 

against E. coli and B. subtilis 
[105] 

Ginger oil-Ag 

(spherical, 14 

nm) 

Cotton, woven 
Wound patch-

es/gauzes 

Gauzes with antimicrobial activity 

against C. albicans, E. coli, and S. 

aureus; improved UV protection; 

brilliant yellow-brownish color 

[106] 

Ag (n.d.) Cotton, woven 

Antimicrobial 

textiles, 

wound dress-

ings 

Good antibacterial activity 

against S. aureus and E. coli 
[107] 

Tamarin-Ag 

(n.d., 20–50 

nm) 

Linen, woven 

Antibacterial, 

UV-protective, 

and flame-

retardant tex-

tiles 

Antibacterial activity against S. 

aureus and E. coli; UV protection 

and improved antioxidant activity; 

moderate improvement of flame 

retardance 

[108] 

Fe, Cu, Ag, Co, 

and Ni (n.d.) 
Cotton, woven Catalyst strips 

High catalytic efficiency for the 

conversion of toxic substances 

from azo dyes and nitrophenols 

[109] 
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Co (n.d., 

90 ± 22 nm) 
Cotton, woven 

Catalyst for 

the reduction 

of pollutants in 

water 

CoNPs showed reduction of congo 

red dye (96% of the dye was de-

graded in only 21 min) and nitro-

phenols in aqueous solutions 

[110] 

Immobilization 

Cu (n.d., 

80–90 nm) 
Cotton, woven 

Catalyst for 

dye reduction 

Cu catalyst remained active even 

after three usages; excellent stabil-

ity and recyclability during the 

degradation process 

[111] 

ZnO and Ag 

(n.d., 

35 and 40 nm) 

Cotton, woven 

Technical 

textiles with 

antimicrobial 

and UV pro-

tection proper-

ties 

Antimicrobial action against S. 

aureus and E. coli; noticeable 

increase in UV blocking and in 

bending rigidity; functional prop-

erties maintained even after 15 

washing cycles 

[112] 

ZnO and 

TiO2 (n.d., 10–

30 nm) and 

silicon dioxide 

(SiO2) (n.d., 

10–20 nm) 

Cotton/polyester, 

woven 

Antibacterial 

and UV-

protective 

textiles 

Good antibacterial effect for fab-

rics coated with TiO2, followed by 

ZnO and SiO2; higher UPF for the 

samples with TiO2, followed by 

ZnO, SiO2NPs, and chitosan 

[113] 

Fe (NO3)3 (n.d) Ramie, woven 

Flame-

retardant tex-

tiles 

Flame-retardant properties were 

improved; mechanical properties 

were reduced 

[114] 

Chitosan-Ag 

(spherical, n.d.) 

Polyamide, wo-

ven 

Antimicrobial 

textiles 

Bacterial activity with the addition 

of AgNPs but reduced after 20 

washing cycles; consistent color, 

even after one year 

[115] 

Alginate 

Alginates are natural anionic polysaccharides 

that can be isolated from a variety of brown sea 

algae and bacteria, including Pseudomonas and 

Azotobacter. Alginate polymers are made up of two 

monomers, D-mannuronic acid (M blocks) and L-

guluronic acid (G blocks), which are connected 

together by -(1,4) (M residue) and -(1,4) (L residue) 

glycosidic linkages, resulting in a copolymer with 

varying types of blocks (MM, GG, or GM) depend-

ing on the extraction source[21, 87, 116-124]. 

AgNPs can be mixed with alginate to be utilized 

as a coating/finishing agent in fabrics, or they can 

be integrated directly into the alginate fiber during 

wet or electrospinning processes. Zhao et al., for 

example, described the wet spinning of alginate 

fibers embedded with AgNPs, demonstrating that 

the antibacterial activity was efficient against both 

E. coli and S. aureus and had a high cell-killing 

efficiency in human cervical cancer (HeLa) 

cells[125]. 

Starch 

Because of its promising physicochemical quali-

ties, including as biocompatibility, biodegradability, 

non-toxicity, and cohesive film-forming properties, 

starch is a natural polymer of special interest for a 

wide range of industrial applications. One of the 

least expensive polysaccharides is this sustainable 

biopolymer. It is widely available and may be de-

rived from various plant parts such as stalks, roots, 

and seeds, with cassava, wheat, rice, corn, and pota-

toes being the primary sources. Starch is a semi-

crystalline polymer of anhydroglucose units linked 

by -(1,4)-glycosidic linkages, made up of two mon-

omers: amylose and amylopectin. Amylose, which 

is composed of a linear glucose chain, is responsi-

ble for the amorphous structure of starch granules 

and accounts for 15-30% of their makeup. In con-

trast, amylopectin is a branched glucose chain with 

crystalline zones and represents 70–85% of the 

starch[116, 126-130]. 

 

 

Table 4: Viscose Fabric Functionalized with Copper and Copper Alginate Treatment Toward Antibacterial 

and UV Blocking Properties.  
Polysaccharide 

Function 

NPs (Shape, 

Size) 

Textile Substrate, 

Structure 
Application Results Ref 

Reducing 

agent; 

substrate 

Ag (n.d.) 
Alginate, electrospun 

fibers 
Sensors 

Sensitive humidity sensor for 

breathing monitorization 

(humidity range between 

20% and 85%) 

[37] 

Reducing 

agent; 

substrate 

Polypyrrole/Ag 

(n.d.) 
Alginate, non-woven 

Multifunctional 

textiles 

Highly conductive, hydro-

phobic, and UV-resistant 

fabric; antistatic properties 

improved; thermally stable 

[131] 
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Stabilizing 

agent; immobi-

lization 

Ag (spherical, 

10–25 nm) 

Alginate, wet-spun 

fibers 

Antibacterial tex-

tiles 

Excellent antibacterial activi-

ty against E. coli and S. aure-

us; cytotoxic effects against 

cancer HeLa cells 

[132] 

Substrate Ag (n.d.) 

Chitosan/PET/alginate, 

LBL 

composite 

Nano/ultrafiltration 

membranes 

Antibacterial activity 

against E. coli and S. aureus; 

remotion of oils up to 93%; 

NP retention greater than 

98% 

[133] 

 

Table 5: Textile materials functionalized with starch and metal nanoparticles. Polysaccharide function towards 

MNPs. 

Ref. Results Application 
Textile 

Substrate, 

Structure 

NPs (Shape, 

Size) 

Polysaccha-

ride 

Function 

[134] 

ZnO/cotton–starch (3%) with bacteri-

al reduction of 96% (S. aureus) and 

76% (E. coli) 

Antibacterial tex-

tile 
Cotton, wo-

ven 

ZnO (flakes 

and nanoflow-

ers, 16.2 nm) 

Immobiliza-

tion 
[134] 

Flame-retardant with no dripping; 

hydrophobic with self-cleaning prop-

erties (∆RGB of 73.9); cell viability 

of 129%; bacteria reduction of 97%, 

100%, and 94% (E. coli, S. aureus, 

and C. albicans, respectively) 

Multifunctional 

textiles (flame-

retardant, self-

cleaning, antimi-

crobia 

Polyester, 

woven 

ZnO (spheri-

cal, 52.42 nm); 

ZnO on fabric 

(hexagonal, 

11.96 nm) 

[135] 

Hydrophobicity (WCA of 110°); an-

timicrobial activity of 96%, 94%, 

92%, and 89% (against S. aureus, E. 

coli, P. fuorescens, B. subtilis, and C. 

albicans, respectively); washing dura-

bility 

Antimicrobial 

textiles (medi-

cal,cosmetic, 

sports) 

Cotton,woven 
CuO (spheri-

cal, 

10–100 nm) 
Reducing 

agent 

[136] 

Superabsorbent (227%); photocatalyt-

ic (∆RGB of 75); good antimicrobial 

properties for the hydrogel but very 

low for the fabric treated with the 

hydrogel (poor adhesion) 

Agriculture, medi-

cal textile, water 

treatment 

Cotton, wo-

ven MnO2 (n.d.) 

[137] Antibacterial activity against S. aure-

us and E. coli (halo) 

Medical textiles, 

water purification Cotton, knit Ag (n.d., 

25.7 nm) 

Reducing and 

stabilizing 

agent 

[138] 

Hydrophobicity (WCA of 95.5°); 

antimicrobial activity with a zone of 

inhibition of 1 mm (E. coli); washing 

durability 

Antibacterial tex-

tiles 
Cotton, 

woven 

ZnO 

(spherical, 

88 nm) 
Stabilizing 

agent 

[132] 

Antimicrobial activity of the ZnONPs 

with a zone of inhibition of 3.67 and 

2.33 mm (S. aureus and E. coli, re-

spectively) 

Face masks Face masks, 

non-woven 
ZnO (n.d.) 

Cyclodextrins 

CDs are cyclic oligosaccharides formed by the 

enzymatic breakdown of starch and consist of six, 

seven, or eight -(1, 4)-linked -D-glucopyranose 

units. Their structure is a truncated circular cone 

with a hydrophobic interior cavity and a hydrophilic 

outside surface. Inclusion complexes can develop in 

the hydrophobic inner cavity with guest molecules, 

which are held together by Van der Waals and hy-

drophobic forces. Because of their ease of manufac-

ture, availability, cavity diameter, and low cost, -

CDs are the most often used CDs in the textile sec-

tor. Dyeing auxiliary to increase dye adsorption and 

K/S; encapsulation of active chemicals such as fra-

grances, medicines, and antimicrobial agents; and 

fiber spinning are some of their applications[129, 

139-141]. 

According to Keshavarz et al., an antibacterial 

and drug-delivery fabric was created by in situ syn-

thesis of polyamidoamine (PAMAM)/-CDs/Ag 

nanocomposites on a polyester fabric. PAMAM 

enabled polyester fabric aminolysis, resulting in 

stable connections with -CDs/Ag composites. The 

ensuing nanocomposite fabric demonstrated a 45% 

drug release of the molecules placed into the -CDs 

cavities after 150 h and a 100%, 100%, and 99% 

microbial decrease in E. coli, S. aureus, and C. albi-

cans, respectively[142]. Another study used AgNPs 

to build an antimicrobial drug-delivery system by 

synthesizing them on a -CD/ketoconazole (KZ) 

combination and then loading them onto cotton fab-

ric. Ketoconazole is an antifungal medication, and 

the addition of AgNPs to -CDs/KZ increased its 

antibacterial capabilities while also controlling its 

release rate. Microbial decrease was 100% in C. 
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albicans and A. niger and around 85% in E. coli and 

S. aureus in the sample prepared with 2% Ag[143]. 

Antimicrobial cotton fabrics were created by utiliz-

ing -CDs and sulfated -CDs (S--CDs) to host AgNP 

inclusion complexes. The most advantageous tech-

nique was determined to be the treatment with the 

derivative -CDs-AgNP complex and crosslinking 

with ethylenediaminetetraacetic acid (EDTA). S--

CDs + AgNPs + EDTA inhibited S. aureus by 95% 

and 79% (before and after 10 washing cycles, re-

spectively) and E. coli by 95% and 77% (before and 

after 10 washing cycles, respectively)[144]. 

 

Table 6: Textile materials functionalized with cyclodextrins and metal nanoparticles. Polysaccharide function 

towards MNPs. 

Polysaccharide 

Function 

NPs (Shape, 

Size) 

Textile 

Substrate, 

Structure 

Application Results Ref. 

Reducing and 

stabilizing agent 

Ag/TiO2/β-CDs 

(semi-spherical, 

48 nm) 

Cotton, 

woven 

Antibacterial 

textile, self-

cleaning, envi-

ronmental reme-

diation 

Ag/TiO2/β-CDs samples with 

excellent self-cleaning properties 

(methylene blue); antibacterial 

activity against S. aureus of 

96.8% 

[145] 

Ag (n.d. *) 
PET, 

non-woven 

Wound dressing, 

antibacterial, 

drug release 

Poly-CDs: Ag adsorption of 450 

μg·cm−2 (24 h), Ag release of 23 

μg·cm−2 (3 days), bacterial re-

duction of 4 log10 (S. aureus) 

and 6 log10 (E. coli); PEM coat-

ing: reduced Ag diffusion (8.0 

μg·cm−2), bacterial reduction of 3 

log10 (S. aureus) and 5 log10 (E. 

coli) 

[96] 

Ag (n.d.) 
PET, 

non-woven 

Wound dressing, 

antibacterial, 

and 

antalgic drug 

release 

PEM system allowed for com-

plete IBU-L release in 6 h; PET-

CD-Ag-PEM had a bacterial 

reduction of 4 log10 against S. 

aureus and E. coli; cell viability 

of 0% 

[146] 

Stabilizing agent; 

immobilization 

Ag2O (n.d., 20.6 

nm); 

Ag/β-CDs (n.d., 

9.5 nm) 

Polyester, 

woven 

Drug release and 

antimicrobial 

textile 

Drug release of 45% (150 h); 

microbial reduction in E. coli, S. 

aureus, and C. albicans of 100%, 

100%, and 99%, respectively 

[142] 

Ag (cubic, 

31 nm) 

Cotton, 

woven 

Antibacterial 

textile 

S-β-CDs + AgNPs + EDTA with 

a bacterial reduction in S. aure-

us of 95% and 79% and in E. 

coli of 95% and 77% (before and 

after 10 washing cycles, respec-

tively) 

[144] 

Ag (n.d.) 

POM/β-CD 

electrospun 

microfiber 

mat 

Waste 

treatment, mo-

lecular recogni-

tion, catalysis 

Ag/POM/β-CDs mats (average 

fiber diameter of 6.4 μm) with 

excellent catalytic degradation of 

organic dyes in the presence of 

NaBH4 

[147] 
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Table 7: Some of the recent nanopolymers–biopolymers coating combinations reported in the scientific litera-

ture and their specific properties 
NPs Used polymer The effect of nanoparticles addition Ref 

Zinc oxide nanorods 
Gelatin/clove 

essential oil 
Enhancement of antimicrobial activity [148] 

Zinc oxide nanorods 
Soybean poly-

saccharide 

Enhancement of antimicrobial activity: E. coli (from 7 to 5 log 

after 12 h) and S. aureus (from 6 to 1 log after 12 h) 
[149] 

PVA/graphene oxide/ starch 

silver 
PVA Antibacterial properties [150] 

Zinc oxide nanopartiles 

Copper oxide 
Carrageenan 

ZnO NPs strongly improved antimicrobial activity against E. 

coli and L. monocytogenes 
[151] 

Zinc oxide nanorod nano-

kaolin 
Semolina 

Enhancement of UV barrier properties and antimicrobial activi-

ty against E. coli (from 0 to 3 mm) 
[152] 

Rice cellulose nanocrystals CHTS/PVA 

Without changes in antifungal response C. gloeosporioides and 

L. theobromae and antimicrobial against S. mutans, S. aureus, 

E. coli, and P. aeruginosa activities 

[153, 

154] 

Copper oxide nanocompo-

sites 
CHTS 

Enhancement of antimicrobial activity against E. coli, P. aeru-

ginosa, S. aureus, B. cereus (all results were depending on the 

concentration and ratio of MMT and CuONPs 

[148] 

Flax cellulose nanocrystals CHTS 

Enhancement of antimicrobial activity: P. aeruginosa, E. fae-

calis, L. monocytogenes, E. coli, and S. aureus (from 6.31 to 

16.05 mm of inhibition zone) 

[155] 

Nanocrystals and silver 

nanoparticles 
CHTS 

Enhancement of antimicrobial and antifungal activity (from 0 

to 96 mm2 of inhibition zone depending on the concentration 

and ratio of silver nanoparticles and BCNC) 

[156] 

CHTS NPs Tara gum 
Antimicrobial activity against E. coli (from 0 to 87.32 mm2 of 

inhibition zone) and S. aureus (from 0 to 111.71 mm2 ) 
[157] 

CHTS/gallic acid NPs 
Konjac glu-

comannan 

Enhancement of antimicrobial activity: S. aureus (from 0 to 20 

mm of inhibition zone) and E. coli (from 0 to 12 mm) 
[158] 

Potatoes starch Tapioca 

starch CHTS 

Turmeric nan-

ofibres 

Antimicrobial activity: B. cereus, E. coli, S. aureus, and S. 

typhimurium (the values were depending on the type of bi-

opolymer) 

[159] 

Halloysite nanotubes Zinc 

oxide nanoparticles 
alginate 

Enhancement in antimicrobial activity against E. coli (from 7 

to 0 log after 3 h) and L. monocytogenes (from 6 to 0 after 9 h) 
[159] 

Cellulose 

Cellulose is a fibrous natural polymer with na-

noscale dimensions, hence the name nanocellulose. 

Nanocellulose is a polysaccharide composed of -(1-

4) linked anhydro-D-glucose units with a polymeri-

zation degree of up to 20,000, depending on the 

cellulose source. Plants, bacteria, algae, and mam-

mals are all natural sources of nanocellulose. There 

are three varieties of nanocellulose: cellulose nano-

crystals (CNCs), cellulose nanofibrils (CNFs), and 

bacterial nanocellulose (BNC). CNCs with needle-

like or rod-like morphologies are produced by 

chemical hydrolysis of pure or delignified cellulose 

sourced from plants. Strong acids hydrolyze the 

disordered or amorphous areas of cellulose, leaving 

the crystalline regions intact because they are re-

sistant to acid digestion[160-162]. The chemical, 

physical, and biological features of nanocellulose-

based materials are particularly fascinating. Be-

cause of its nanosized structure, its inertness and 

increased surface area influence the availability of 

hydroxyl groups, allowing the adsorption of various 

ions, atoms, and molecules. Aside from being phys-

ically strong, nanocellulose has morphological, 

chemical, and optical qualities that can be adjusted. 

Furthermore, it is a plentiful and renewable re-

source with a low production cost[163]. Cellulose, 

in various forms, is frequently used in textile finish-

ing as a reducing or stabilizing agent, binder, and 

stiffener to aid in the incorporation of MNPs into 

the fabric, embedding characteristics into the final 

product. [19, 164-173] 

Other Polysaccharides 

Pectin is a widely distributed polysaccharide 

that is mostly formed of -(1,4)-linked galacturonic 

acid homopolymer and is one of the most compli-

cated anionic heteropolysaccharides. It is easily 

available because it is a component of plant cell 

walls. Pectin has so emerged as a viable biopoly-

mer, owing to its sustainability, biocompatibility, 

and biodegradability. It is feasible to obtain electro-

spun fibers made entirely of pectin; however, this is 

a difficult and time-consuming technique. As a re-

sult, pectin is commonly employed in a composite 

blend of electrospun functional composite fabrics. 

Hyaluronic acid is made up of numerous glucuronic 

acid and N-acetyl-glucosamine repeats. It is abun-

dant in nature and found in all mammalian species, 

but it has also been found in Pseudomonas bacteria 

and other creatures[174-181]. Hyaluronic acid is 

made up of numerous glucuronic acid and N-acetyl-

glucosamine repeats. 
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Table 8: Textile materials functionalized with cellulose and MNPs. Polysaccharide function towards MNPs.  

Polysaccharide 

Function (Cel-

lulose Type) 

NPs 

(Shape, Size) 

Textile 

Substrate, 

Structure 

Application Results Ref. 

Immobilization 

(CNFs) 

Ag-

NH2 (spherical, 

~20 nm) 

CNFs and 

gelatin, non-

woven 

Wound dressing 

Improved mechanical, self-

recovery, and hemostatic (gelation) 

properties; antibacterial properties 

against S. aureus and P. aerugino-

sa; fluid balance on the wound bed 

[182] 

Ag (n.d. *) Cotton, woven 

Disposable e-

textiles (electronic 

devices integrated 

into fabrics) 

Better surface wetting and im-

proved inkjet printing process; 

higher-speed inkjet printing 

[183] 

ZnO (n.d., 

90 ± 10 nm) 
Cotton, woven 

UV-protective 

textiles 

Reduced the agglomeration of 

ZnO; decreased air permeability; 

improved mechanical properties; 

showed a bacteriostatic inhibition 

effect against E. coli and S. aureus 

[184] 

Immobilization 

(viscose) 

TiO2 (n.d., 50 

nm) 
Cotton n.d. 

Photocatalytic self-cleaning and 

permanently stiff cotton properties; 

increased degradation rate of or-

ange II dye under UV–vis light 

irradiation 

[185, 

186] 

Reducing and 

stabilizing agent 

(Na-CMC) 

Ag (spherical, 

2–8 nm, 5–35 

nm; whiskers, 

L: 130–420 

nm, 

W: 15–40 nm) 

Cotton, woven 
Antibacterial tex-

tiles 

Bactericidal activity against bacte-

rium 

S. epidermidis and fungus C. albi-

cans 

[186] 

It is abundant in nature and found in all mam-

malian species, but it has also been found in Pseu-

domonas bacteria and other creatures. Hyaluronic 

acid is extremely hydrophilic and water soluble. It 

has unusual rheological properties, such as consid-

erable water retention, and is commonly classified 

as a lubricant [145,146]. Hyaluronic acid is a prom-

ising option for functional medicinal materials that 

enhance wound healing due to its ubiquitous pres-

ence in the mammalian extracellular matrix. It was 

claimed that electrospun non-woven medicinal fab-

rics contained hyaluronic acid and AgNPs in their 

formulation. Hyaluronic acid was used in these fab-

rics to stimulate tissue regeneration and prevent cell 

adhesion. Despite the fact that hyaluronic acid is 

extremely soluble, its release from textiles has been 

described as sluggish, taking 1.5 to 2.5 days to re-

lease 50%. In tendon and peritendinous regions, 

these textiles reduced inflammation, increased col-

lagen deposition, and inhibited cell adhesion.[187, 

188].  

Carrageenans are polysaccharides derived from 

Rhodophyta marine algae that are made up of alter-

nating 3-linked and 4-linked -D-galactopyranose. 

Carrageenans, which are constituted of galactoman-

nans, have a mechanical synergy with locust bean 

gum, which is produced from the seeds of the carob 

tree. Carrageenans and locust bean gum are both 

well-known gelling agents. They are also widely 

available, sustainable, and biocompatible. Because 

of their biocompatibility, biodegradability, and, in 

certain cases, immunoregulatory function, these 

polymers are primarily envisioned for textile medi-

cal applications like as wound dressings and in-

dwelling devices. When employing these polymers, 

AgNPs are employed as an antibacterial agent to 

control and prevent infections in the great majority 

of applications[19, 189]. 

 

Table 9: Textile materials functionalized with other polysaccharides and metal nanoparticles. Polysaccharide 

function towards MNPs. 

Polysaccharide 

Function 

NPs 

(Shape, 

Size) 

Textile Sub-

strate, Structure 
Application Results Ref. 

Antimicrobial activi-

ty (Dextran) 

Ag (spher-

ical, 8–58 

nm) 

Cotton, n.d. * 
Wound 

dressing 

Formulations exhibited moderate 

antimicrobial activity against A. ni-

ger, C. albicans, S. aureus, and E. coli 

[190] 

Reducing and stabi-

lizing agent (κ-

carrageenan and 

locust bean gum) 

Au (spher-

ical, 21–45 

nm) 

n.d. General use 

κ-carrageenan and locust bean gum 

reduced and stabilized AuNPs; the 

formulation can be laminated on non-

woven fabric at industrial large scale 

[191] 

Stabilizing agent 

(pectin) 

Ag (n.d. *, 

24 nm) 

Pectin, PVA, 

PVP, and mafe-

Wound heal-

ing 

Low antibacterial activity against S. 

aureus, E. coli, and P. aeruginosa; 
[188] 
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nide acetate, non-

woven 

acceptable cytotoxicity, including 

faster in vivo wound healing 

Stabilizing agent 

(pullulan) 

Ag (spher-

ical, 20 

nm; in 

sodium 

silicate) 

Cotton, n.d. n.d. 

Functionalized cotton water uptake 

became stimuli-responsive to pH and 

temperature between 24 and 30 °C 

(neutral and acid pH) 

[192] 

Substrate (pectin and 

hyaluronic acid) 

Ag (spher-

ical, 8.6 

nm) 

Pectin, hyaluron-

ic acid, and PVA, 

non-woven 

Wound 

dressing 

High antimicrobial activity against B. 

subtilis, S. aureus, and E. coli; histo-

logical analysis displayed a faster 

healing process, attributed to the 

presence of hyaluronic acid 

[188] 

Substrate (pectin) 

Ag (spher-

ical, 3.7–

8.6 nm) 

Pectin, non-

woven 

Wound heal-

ing, cataly-

sis, and Ra-

man en-

hancement 

AgNPs homogeneously distributed in 

the pectin nanofibers, and their size 

may be tailored; AgNP release took 4 

weeks 

[174] 

Substrate (PVA, 

gum arabic, and 

polycaprolactone) 

Ag (spher-

ical, 10–

100 nm) 

PVA, gum ara-

bic, and poly-

caprolactone, 

non-woven 

Wound 

dressing 

Low antimicrobial activity against S. 

aureus, E. coli, P. aeruginosa, and C. 

albicans. Improved adequacy of wa-

ter-vapor permeability and porosity 

for wound-dressing use; suitable cy-

totoxicity 

[193] 

Conclusion 

The application of polysaccharides is critical in 

the development of functional, eclectic, and envi-

ronmentally friendly fabrics utilizing MNPs. The 

combination of biopolymer (Polysaccharides) and 

MNPs has significantly expanded the area of textile 

functionalization, encouraging the development of 

novel functions, stacking properties, and their aug-

mentation through synergy or increased efficacy. 

The capacity of biopolymer to decrease and stabi-

lize MNPs in fabrics has significantly enhanced 

their activity, concentration, and washing fastness. 

Reduced MNP concentration (without sacrificing 

activity) and greater washing fastness indicate an 

essential role in minimizing MNP environmental 

pollution, which should be vigorously encouraged. 

Furthermore, the totally sustainable nature of poly-

saccharides, as well as their ability to reduce (or 

remove) toxic reduction chemicals, should be inves-

tigated. 
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 ِصز  بٕها،، طباعت إٌّسىجاث واٌصباغت واٌخجهٍزلسُ  اٌخطبٍمٍت،وٍٍت اٌفٕىْ  بٕها،جاِعت  1
 ِصز  ،طٕطا، طباعت إٌّسىجاث واٌصباغت واٌخجهٍزلسُ  اٌخطبٍمٍت،، وٍٍت اٌفٕىْ طٕطاجاِعت  2

 

 المستخلص

أصبح عٍُ اٌّىاد أوثز شعبٍت وفائذة، ِع وجىد طٍب وبٍز عٍى اٌّىاد اٌّزوبت اٌخً حجّع بٍٓ أفضً سّاث ولا 

الإعلاَ وفً ِجّىعت ِخٕىعت ِٓ اٌّىىٍٔٓ. ولذ أحذثج ِزوباث اٌبىٌٍّز إٌأىٌت ِؤخزًا ضجت وبٍزة فً وسائً 

اٌصٕاعاث. وواْ هٕان اٌىثٍز ِٓ الاهخّاَ بخعذًٌ بٍٕت وحىىٌٓ اٌّىاد عٍى ِمٍاس إٌأىِخز فً جٍّع أٔحاء اٌعاٌُ فً 

اٌسٕىاث الأخٍزة. ٔخٍجت ٌذٌه، فئْ اٌفحص اٌذلٍك لإٔخاج وخصائص وحطبٍماث إٌأى ِزوباث اٌبىٌٍّزٌت أِز 

أى ِزوباث اٌبىٌٍّزٌت إٌى أٔىاع عذٌذة اعخّاداً عٍى ِجّىعت ِخٕىعت ِٓ اٌخصائص. ٌخُ ضزوري. ٌخُ حصٍٕف إٌ

اسخخذاَ طزٌمت هلاَ اٌسىي، واٌبٍّزة فً اٌّىلع، وخٍظ اٌّحٍىي، وخٍظ اٌذوباْ، واٌبٍّزة اٌخذاخٍٍت فً اٌّىلع فً 

ِىٌىجٍت وِماوِت اٌٍهب واٌعزي اٌخحضٍز. حُ اٌبحث عٍى ٔطاق واسع فً اٌخصائص اٌٍّىأٍىٍت واٌبصزٌت واٌزو

 ٌٍّزوباث إٌأىٌت. أخٍزًا، حُ اسخىشاف اٌخطبٍماث اٌّهّت ٌٍّزوباث إٌأىٌت، بالإضافت إٌى إِىأاحها اٌّسخمبٍٍت.

 : حىٕىٌىجٍا إٌأى، اٌخخٍٍك، اٌبىٌٍّز إٌأىي، اٌخطبٍكالكلماث المفتاحيت


